Sticky Shed & Loss of Lubricant

This post has been updated as: http://richardhess.com/notes/2007/03/21/soft-binder-syndrome-and-sticky-shed-syndrome/

For a current list of degrading analog tapes, click here.

For several years, we have been discussing the differences between Sticky Shed Syndrome (SSS) and Loss of Lubricant (LoL).

Recent work in which I’m participating seems to indicate that what we thought was happening in both instances may not be really what is happening.

For now, the continued recommendation is to bake tapes for which baking works. These include:
Agfa (pre-1990): PEM 468, PEM 469
Ampex/Quantegy (1970s-1980s): 406, 407, 456, 457
Note: Recent reports indicate that these problems may exist in tapes  made in the 1990s
and later, even under the Quantegy name.
Audiotape/Capitol (early 1980s): Q15
Note: This tape may or may not respond to baking. Some tests will be conducted soon.
Scotch/3M: 226, 227, 806, 807, 808, 809

If these are squealing and leaving deposits, they should be baked (at your own risk). The Ampex patent for baking tapes can be found here.

The classic test for determining if a tape is suffering from LoL has been to bake it and see that baking fails. The assumption has then been that it is loss of lubricant. This test, however,  may exacerbate the condition and it is not recommended to bake suspected LoL tapes.

Tapes which appear to be suffering from LoL include:
Scotch/3M: 175 and Melody 169 (a seconds brand of Scotch)
Sony: PR-150
Pyral: (type numbers unknown for this French tape)

We have seen cassette tapes also suffering from LoL.

There are several ways to address playing LoL tapes, but, for the moment, we are not prepared to publish anything definitive beyond Marie O’Connell’s tried and true method shown here.

Let sleeping tapes lie—what to do with poorly wound tapes

Often a tape comes in for restoration that has been poorly wound or poorly stored. Here is an example:

cinched tape

One of the interesting things about this particular tape was it had been recently wound on a constant-tension professional machine prior to shipping to me.

We think that the entire tape had not been re-wound, allowing the higher tension wind to compress the inner core slightly, causing this cinching. After transferring the tape (which didn’t show much ill effect for its cinching), we still found it difficult to get the tape to wind smoothly on the reel.

Therefore, our current suggestion is if you find a tape like this, do not rewind it and attempt to clear up the cinching unless you are also ready to transfer the tape, as there are no guarantees that it can be wound better after unwinding.

Please see this post for an update (2008-02-15).

Binder adhesion to back of next layer

In several instances, we have seen binder adhesion to the back of next layer in the tape pack. When the tape is unwound, a portion of the the binder adheres to the layer it was resting on, and is pulled off the layer it was supposed to be on. It looks like this when held up to the light:

There are many possible causes for this adhesion (or pinning, as it is sometimes called). For this tape, we believe moisture intrusion and poor storage conditions contributed to the problem. It is often a problem with plastic leader tape.

Slow unwinding has reportedly helped, as has cold, dry storage for an extended period.

This tape   (Melody 169) also squealed, but we finally got an acceptable transfer. Fortunately, this was recorded on only one track, and it wasn’t the one with all the holes in this picture.

Cassette Equalization: The 4 dB ambiguity at 16 kHz

There have been rumours that Nakamichi used a different cassette standard than the other manufacturers. This is not really the case. Everyone thought they were using the same 3180/120 or 3180/70 microsecond equalization as specified in IEC Pub 60094-1, 1981. There is further discussion from 2010 here.

As I understand the history, both Nakamichi and STL in the late 1970s discovered that when they made calibration tapes based on the published time constants in the standards, their response showed that the then-common BASF alignment tapes were approximately 4 dB high (hot) at 16 kHz.

It is assumed that BASF, who made the calibration test tapes made an error in calibrating their reproduce heads’ response in one of two areas:

Read more

Second seminar complete and was a success

We have recently completed our second audio tape restoration seminar.

We had three great attendees. One of them, Andy Kolovos of the Vermont Folklife Center shared these comments:

I want to thank you again for the workshop. I’m certainly still assimilating stuff in my head, but it was terrific. I learned so much… Through these workshops you’re doing the archival field a huge service. The ability to tap into your experience and take what we learn back into the world with us enriches everyone. Because you are willing to share your knowledge, skill, and passion with those of us who love these audio resources, work with them on a daily basis and are eager to learn all we can about their care, more of the aural heritage of the world will survive into the future. Your generosity is wonderful! Thanks again!

You can see the brochure for our November 2005 seminar here.

Comments from the November 2005 seminar are in the brochure  for the May 2006 seminar.

The first three of the four days we were together about 13 hours a day (including dinner at various restaurants) and we didn’t stop talking audio. We covered a LOT of ground and the questions and discussions were great.